当前位置:首页 > 学校特色 > 绿色教育
谈谈小学数学解决问题教学策略
来源:     作者:薛飞虎     发布时间:2015-04-25     】    【关闭

     小学生数学水平之间的差异主要原因并不是缺乏相应的知识,而是缺乏解题思路与技巧,找不到思考点和突破口,不知如何着手分析。新数学课程标准中所说的“解决问题”教学,要求我们把数学知识寓于现实的问题情境中,让学生在情境中理解、发现并提出问题,然后利用有关知识经验,通过学生的探究和教师适当的点拨指导,既解决了问题又学习了数学知识,形成了数学能力,并能获得一定的情感体验。其实质就是在教学中充分发挥学生的主体作用,使学生参与和体验知识技能由未知到已知的过程。在这一过程中提高学生应用数学的意识,激发和培养学生的独立探究能力,发展学生的创造性思维。
      一、暴露思维过程 ,锤炼思维品质
      数学教学,不仅要会做,更要让学生掌握数学思维的方法,养成敏捷、独特、灵活、缜密等良好的思维品质。展现思维过程是发展学生思维的过程,我们总是在曲折中求思简捷,在运用中变得灵活,在疏漏中学会缜密,在思考中学会思考。展现思维过程是形成良好认知结构的需要,也是防止两极分化的有效措施。
      例:一桶油连桶重36.5千克,用了一半后,连桶还有20.5千克,油桶重多少千克?此题在作业中出现过几次,有多种解答方法,但有一定的难度,是开发学生思维的好题。在教学中,学生先读题,思考片刻,学生举手:
      生1:我的算式是“36.5-(36.5-20.5)×2” 先求半桶油的重量,算式是“36.5-20.5” 再求全桶油的重量,算式是“(36.5-20.5)×2” 问题要求油桶重多少千克,只要把“总重量-全桶油的重量”,所以算式是“36.5-(36.5-20.5)×2 ”
      生2:我的算式是:“20.5×2-36.5” 把20.5× 2算出一桶油和两只桶的重量,减去油和桶的总重量,就是桶的重量,所以算式是“20.5× 2-36.5”
      生3:我的算式是:(20.5-36.5 ÷2 )× 2 ……
      生4:解:设油桶重为X千克。36.5-(36.5-X)÷2=20.5
      ……
      学生思维踊跃,能清楚地表达出解题的思路,内心喜悦之余,我多了一个心眼,学生是否能真正理解?黑板上写下四五种方法后,我问“谁来说说算式1,你是怎么想的?”一举手我吓了一跳,全班54人,只有10多个同学表示能讲清理解,热闹的表达发言之外,还有三分之二多的同学是一片迷茫,似懂非懂。算式2算式3能说理的同学则是更少。看来这决非偶然因素,这里蕴涵一定的教学规律。第一次教学决不能留下“半生的米饭”,必须让学生知其所以然,否则以后再多的练习也只能是“事倍功半”。为此,引导学生说算式(1)的思路时:我在算式“36.5-20.5”下面标明半桶油(不含桶)的重量,接着让学生,直至每个同学理解为止。方法(2):先让生说出“20.5×2”表示什么?再请学生讲清解题思路。就这样我采用了“小步子”的教学方式,让中等生和学困生也来说说理,暴露暴露思维过程。在交流中让更多的学生相互得到了补充,从中学会了分析问题、表达结果相结合过程的策略和思想方法。
      二、引导反思评价 ,优化解决策略
      “解决问题”教学的目的不仅仅是解决一个或几个问题的本身,而应该是让学生通过课堂上的几个问题解决过程的经历、探索与体验来学会解决问题的一些常用的基本策略和方法,并且获得情感上的体验。掌握数学思想方法才是数学教学的策略,才能适应问题的千变万化。而组织学生对解决问题过程与方法的反思评价是形成数学思想和策略非常关键的一步,也是过去教学未能重视的一环。在探求过程中,往往会出现许多不同的方法和结果,教师要给予学生充分的自由,允许他们发表意见,保护学生的积极性。问题解决后,教师还要善于引导学生比较多种答案,找出最好的解决方案。教学中我要求学生学会分析自己解题途径是否最简捷,推理是否严谨,如果问题解决的方法失败了,那就要部分或全部地重复问题解决的整个过程。有效地评价问题解决的成果,有助于学生的发展性成长,能促使学生真正地提高数学技能。
      在反思和评价过程中,教师要精心指导,指导学生反思解决问题的方法(问自己或他人是怎样想的?怎样做的?是怎样使用已知信息的?);指导学生评价方法的合理性(这样对吗?有不合理的地方吗?);指导学生评价方法的多样性和优化性(还有其他方法吗?还有更好的方法吗?);指导学生在反思解题过程中运用了那些具体的策略,这些具体策略中包含了哪些最基本的思想方法,并对此进行加工、提炼、归纳而得到适用范围更广泛的一般数学思想方法。
      另外,反思评价也是让学生体验成功与进步的一个重要过程,能让成功的学生增强自信,让未成功的学生得到鞭策,让有创新意识的学生得到张扬。
      例如我让学生解答这样一道题:在一个正方形池塘的四周种树,每边都种有20棵,并且四个顶点都种有一棵树,池塘四周共种树多少棵?很多同学都做出这样的答案:20×4 =80(棵)。这时我就引导学生画出每边种4棵或5棵情况的示意图,来归纳总结规律。从示意图上可以看出,每边种4棵,一共要种12棵而不是4×4=16(棵),每边种5棵是16棵,而不是5×4 = 20棵。为什么不论每边种4棵或5棵,都是比原来设想的少4棵呢?学生通过仔细观察示意图,发现原来解答的错误在于把四个顶点上的4棵树计算了2次,所以都多算了4棵,正确的解答方法应该把重复计算的4棵减去。所以正确答案应是:20×4 – 4 = 76(棵)。实践证明,在数学教学过程中开展评价,有利于激励学生的内在动因,充分调动学生学习的积极性,而且在评价过程中,要对照目标进行自我评价,形成自我反馈机制,这是开展问题解决教学的关键所在。
      综上所述,培养学生解决问题的能力是时代赋予教育的新使命。解决问题可以帮助学生学会用数学思想观察、思考和解决问题,掌握解决问题的策略,对开发学生潜能、引导学生开展探索式学习,提高学生学习的主动性,培养学生的创新能力有着不可低估的作用。它为我们在课堂教学中有效地培养学生的能力,提供了一个有效的新思路,新策略。因而我们要转变教育思想,提高教学意识与水平,深入研究问题解决的教学策略,构建数学素质教育的课堂教学模式,更好地培养学生解决问题的能力和创新能力,并最终实现“人人学有价值的数学”和“不同的人在数学上得到不同的发展”的目标。